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Abstract

In this paper, we study the convergence of a family of iteration
methods to solve nonlinear equations in the complex plane. Two
analysis of convergence are provided. We give a Kantorovich-type
convergence theorem under mild differentiability conditions with er-
ror analysis.
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1 Introduction

Hernandez and Salanova [5] define a new family of iterative processes of
second order depending on a real parameter a > 0 by

h(xa,n)

Tant+1 = Tan — h/(I )
a,n

(14 ah(zan)), n>0,

to solve a nonlinear scalar equation h(x) = 0. A thorough analysis is realized
in [5], it is shown that an iterative processes of above family can always be
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applied to solve h(x) = 0 and this process is faster than Newton’s method.
They also give a Kantorovich theorem to prove the convergence in the com-
plex plane.

We continue with the analysis of the convergence in the complex plane.
We consider the problem of solving the equation

f(z)=0 (1)

where f : D C C — C is an holomorfic function on some open convex domain
D. Let zy = 240 € D and be the family of iterative processes defined in [5]
for all n > 0 by

f(zan)

z —
T [(zam)

where o > 0, to solve equation (1). This family of iterations includes the
Newton’s method as a specific choose of the parameter (o = 0).

On the one hand, we study the Kantorovich convergence of family (2) by
means of majorizing sequences ([7],[9]) where function f satisfy a Lipschitz-
type condition. We also give error bound expressions depending on the real
parameter «.

Let us denote

(1+af(zam)), (2)

Zant+l = Fa(Zoz,n) -

B(z,r)={w e C;lw—z|<r} and B(z,r)={weC;lw—z| <r}.

2 The Newton-Kantorovich convergence

Herndndez and Salanova [5] study the convergence of the family of methods
(2) under standard original Kantorovich conditions [7]. Here we analyse the
convergence of family (2) under milder differentiability conditions. The basic
assumption made is that the first derivative f’ of f is Lipschitz continuous
in D. Let us assume throughout this section that

(c1) [f(20)] = a,
(c2) |f'(20)] =0,

f'(z) = f'(w)
(c3) —f’(zo)

<klz—w|, z,we D, k>0,




(c4) b—2ak > 0.

To establish the convergence of (2) and uniqueness of solution, we will
need the following two results. The proof of the first one follows inmediately.

b — 2ak
Lemma 2.1 Let a be a fized real number that satisfies 0 < o < 3 ba .
a
Then we have:
Ao b2
A
0 o+ ] #
bZ
.. <7 .
(i) If N < 5ok the equation
kN
2
has two positive roots r1 and ro (11 < r3). Besides N = Sak if and
a

only if ri = ro.
Lemma 2.2 Let p be the polynomial defined in (3). Then the sequence
to = Z504,0 = 07

p(ta,n)
p,(ta,n>

tonit = Paltan) = tan — (1+ ap(tan)), n>0, (4)

b— 2ak
18 increasing and converges quadratically to r1 for all 0 < a < Sab
a

Proof. Note that P.(t) > 0 in [0,r;] where
Fo(t) = Ly(t) — ap(t)(2 — Ly(1))
p()p"(t)
and Lp(t) = W
that t,, <171, n>0.

On the other hand, it is easy to prove that ¢, < t4,4+1 for all n € N and
consequently the proof is completed. ]

[4]. Then by mathematical induction on n, it follows

Now we can state an existence-uniqueness theorem.

3



Theorem 2.3 Assume that conditions (c1)—(c4) are satisfied and 0 <

b — 2ak
a < 3 ba . Then the sequence {z,,} defined by (2) converges to a solution
a
. S 4?0 b2 o ,
2* of equation (1) in B(zo,m1) N D for N € |b+ 2k | The limit z* is
a
2(N —b)

the unique solution of (1) in B(zo,7)ND where r = ro+ . Moreover

kN

|Z>’< - Zoz,n| S T — toe,n; n Z 0
So as to show the previous theorem we need the following lemma.

Lemma 2.4 The sequence {to,} defined by (4) is a majorizing sequence
of the sequence {zon} given by (2), i.e.

’Zoz,n—i-l - Za,n’ S ta,n—i—l - toa,na n Z 0. (5)

Proof. By mathematical induction, it suffices to show that the following
statements are true for all n > 0:

[In] f/(za,n) # 0,

f'(20) P (to)
L] f’(za,n) = p/(ta,n)7
[IIL.] [f(20n)| < p(tan),

f(zan) _p(ta,n)
al ‘ ) | = p)

[Vn] |Z0 - Zoe,n+1| < ta7n+1.

All the above statements are true for n = 0 by initial hypotheses (c;)—
(c4). Then we assume that [I;]-[Vy] are true for £ = 1,2,...,n. From
general hypotheses and

f'(z0) = ['(Zamnt1) kN
f/(Zo) S k|Z0 - Za,n-‘rl’ S Ttoa,n+l>
we obtain i ) ( )
Za,n+1 D toz n+1
l]—-—r | <14+ —2= <1
‘ J'(%0) P (to)




Then
P'(to)
- pl (ta,n+1 )

f'(20)
f Ra n+1
Therefore [L,,1] and [II,,1] are true.
Using Altman technique ([1],[10]) and taking into account (2), we deduce
by Taylor’s formula that

f(za,n+1> = f(za,n) + f/(za,n)(za,nJrl - Za,n) + /Zza’n+1 (f/(Z) - f/<za,n)) dz

Za,n+1
= _af(za,n)2 + (f'(2) = f'(zam)) dz.
Taking norms, we have

kb
‘f(za,nJrl)‘ S ap<ta,n)2 + ?(ta,n+1 - ta,n)z-

Repeating the same process for the polynomial p, we get

kN

_tan _tan 2-
~(Fantt = tan)

As P/ (tan) < p(to) =b* and 1+ ap(ta.,) > 1 we infer that

p(ta,n+1) S _ap(ta,n)2 +

Pltanst) = Canen) = (¥ = 0) = 20) it

Hence
|f(zoz,n+1)‘ S p<ta,n+1)7 (6)

4b%«
since N > b+

Consequently [IIIn+1] is true and [IV ;1] follows from an analogous way.
Finally,

f(zam)

a,n — Ran| — 1 a,n < -
|Z,+1 Z,| f/(za,n)( +Oéf(Z7)

. (1+ ap(ta,n))

= ta,nJrl - ta,na

then (5) holds and {t,,} majorizes {zon}. Now [V,41] is deduced inmedi-
ately. ]



Proof of theorem 2.3. The fact that the sequence {¢,,} defined by
(4) majorizes the sequence {z,, } given by (2) is a consequence of lemma 2.4.
So the convergence of {t,,} implies the convergence of {z,,} to a limit z*.
When n — oo in (6), we deduce that F'(z*) = 0.

Moreover, for ¢ > 0, it follows from (5) that |24 14+ — Zan| < tantq — tans
and making ¢ — oo we obtain |2* — z,,| < 11 — tan, n > 0. Besides
|2* — 20| <7y —to =11.

To show the uniqueness of the solution z*. Assume that there exists

2(N =0
another solution w* of equation (1) in B(zo,r) where r = ry + (TV)

Following Argyros and Chen ([2],[3]), we have

f@?) = f) = w = 2) [ P+ b = =) de =0

and

’1 ) /01 £ + " — 2%)) dt‘
<k {|z0—z*|/01(1—t)dt+|zo—w*|/oltdt} < k(“é”) — 1.

1
Therefore w* = z* follows from / f(Z" +t(w* — 2%))dt #0. n
0

Notice that Herndndez and Salanova [5] give uniqueness of solution of
equation (1) in the ball B(zo, 22(2 — /2)) for the family (2).
Now we get error expressions for the sequence {t,,} defined by (4). Fol-

lowing Ostrowski [8], we can deduce following error estimates for r1—t, ,, n >
0.

Theorem 2.5 Let p be the polynomial given in (3). Assume that p has
two positive roots r1 and ro (11 < ry). Let {tan} be the sequence given by

(4)-
(a) Ifry <y, let O, = %\/p_a and A, = %\/a Then
2 2

(r = )AL _ < (ro —11)0%

Joa— Az = a,n_mv

n >0,



2 — akNr3

1
where p, = 3 {2—04]{:]\[(7“2—7’1)2}, Onq = m, 0, < 1 and
A, < 1.
1
(b) Ifry =1y, let 7, = 1(2 — akN7r?). Then
™
Ty <11 —tan < on’ n > 0.

where 7, < 1.

Proof. Let us write aq, = r; —tan and by, = 12 — t,,,. Hence

EN kN

p(toa,n) - TQa,nba,n and p/(t(x,n) - _7(ao¢,n + ba,n)-
By (4) we obtain
2 — akND?
2 an—1
an — n— : 7
flo, aa, 12(aa,n—1 + ba,n—l) ( )
and
) 2 —akNa?,
bOé n = boc n—1 : .
, ’ 2(ao¢,n71 + ba,nfl)
If r1 <1y, denote d,,, = Gan to get

2—OékN(T2—t _1)2
Sam = 02 e =62 o(tan—1)-
) a,n712 _ O(]{ZN(Tl _ ta,n—1)2 a,nflgb ( ) 1)
Taking into account that the function

_ 2—akN(r, —t)?
Palt) = 2 — akN(ry —t)?

is nondecreasing in [0, 7] for all a > 0, we have

00 = 0a(0) < ¢a(t) < da(r1) = pa- (8)

Therefore
2" —1

2TL
5a,n S paéa,n—l S s S Pa ? 504,07
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2™ 1
—_— 2’)1

5a,n > O'a(sa,nfl <...<0a’ 601,07

and so the first part holds.
If 7 = ry, then aqn = ban. By (7) we deduce

Qan = aaz_l (2 - OékNai,n71>'

Repeating an analogous process to the first part we get

Qoyn—1 Qa
aang L SSLQ
’ 2 2n
and
n
aa,n 2 7_ozaoz,n—l 2 <. 2 Ta aa,O-

Thus the second part also holds.
From o, > 0, (8) and p, < 1, it follows that A, < 6, < 1. Besides it is
obvious that 7, < 1. So the proof is completed. ]

Remark. We give now an optimization result by means of asymptotic
error constant [6]. Let us denote the assumptotic error constant of sequence

P 40?
(4) by C, = AGY ‘, where P, is defined in (4). Then, from N > b+ “
it follows that

kN —2a(kNry —b)?

Co=—
kN — b

It is easy to check that function

kN = 2a(kNr - b)?

ho(N) =
(V) ENr;—b
. . . . e b* . .
is nondecreasing. Then the optime value of NV in b+ ok is obtained
a
4b? 4b?
for N = b+ ®  Therefore we will consider N = b + % in practical
situations.

Numerical result. To illustrate theorem 2.3, let us consider the equa-
tion f(z) = 0 where f(z) = e* — 1 is an holomorfic function in C. If we
choose D = B(0,0.5) and zo = 0.2(1 + i), then

a=|f(z)| =0.31259, b=|f(z)| = 12214,



k=1.34986 and 0 < a <0.123592.

Taking into account o = 0.1, we have N = 1.66347. Therefore, from the
definition (3),
p(t) = 1.12273t% — 1.2214¢ + 0.31259.

This polynomial has two real roots: r; = 0.411825 and r, = 0.676065. Hence,
by theorem 2.3, the sequence of iterates {zo1,} given by (2) converges to the
solution z* = 0 of f(z) = 0 in B(z9,0.411825) N D, see Table 1. Moreover
the solution z* = 0 is unique in B(z, 1.06981) N D.

Notice that Herndndez and Salanova [5] would obtain uniqueness of the
solution z* = 0 in B(zg,0.299837) N D. Consequently, the uniqueness domain
has been increased considerablely.

Finally, observe that the sequence {zp1,} converges to z* = 0 faster than
the sequences of Newton’s method {zg,}, see Tables 1 and 2.

20.1,n
0.200000000000000+0.2000000000000001
0.002463980472679+0.0293434514067021
-0.000340904885976+0.0000619548395671

0.000000044957044-0.000000016900126i1
0.000000000000000+0.0000000000000001

B ow o~ o3

Table 1: Process iterative (2)

20,n
0.200000000000000+0.2000000000000001
0.002410647342520+0.0373433091846601
-0.000692598436544+-0.0000985709787071
0.000000235040194-0.0000000682935931
0.000000000000025-0.0000000000000161

B ow N — O3

Table 2: Newton’s method
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